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1.  Introduction

Mechanical forces play a key role in controlling tissue growth 
(Sun et al 2012). In a colony of growing cells, tissue prop-
erties are often different at the periphery than in the interior 
(Nelson et al 2005, Ruiz and Chen 2008, Mertz et al 2012, 
Warmflash et  al 2014, Rosowski et  al 2015). For example, 
in colonies of growing human stem cells, traction forces and 
differentiation occur primarily at the edge of the colony. This 
behavior may be caused by mechanotransduction via integrin 
proteins in the cell membrane that couple the cytoskeleton to 
the extracellular matrix (Yim and Sheetz 2012).

Over the last five years, we have developed the mechan-
ical bidomain model to predict where mechanotransduction 
occurs (Puwal and Roth 2010, Roth 2013, 2015, Sharma 
et al 2015). This macroscopic continuum model accounts for 
stresses and strains in both the intracellular and extracellular 

spaces, and their coupling. The fundamental hypothesis of this 
model is that mechanotransduction effects—such as mechani-
cally induced stem cell differentiation—occur where the dis-
placements in the intracellular and extracellular spaces differ, 
resulting in forces acting on integrins. Our model is different 
than other models in that it is macroscopic (applicable to cell 
colonies or intact tissue rather than single cells), it accounts 
for the elastic properties of the intracellular and extracellular 
spaces separately, and it locates mechanotransduction effects 
where the intracellular and extracellular displacements differ 
rather than where stresses or strains may be large. In previous 
analyses, we have applied this model to cardiac tissue, and 
analyzed, for example, where remodeling occurs in the area 
around an ischemic region in the heart (Gandhi and Roth 
2016).

The goal of this paper is to apply the mechanical bido-
main model to a colony of human embryonic stem cells  
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(figure 1(a)). The model, which is similar to that derived by 
Edwards and Schwarz (2011) and by Banerjee and Marchetti 
(2012), predicts that differentiation and traction forces occur 
within a few length constants of the colony edge. Moreover, it 
provides insight into how mechanical properties of the intra-
cellular and extracellular spaces affect differentiation. One key 
prediction is that the difference between the intracellular and 
extracellular displacements has a different distribution than 
the intracellular and extracellular displacements themselves.

2.  Methods

Our derivation of the mechanical bidomain model is similar 
to that given previously (Sharma et al 2015), except we use 
cylindrical coordinates (r, θ, z). The intracellular relationships 
between stress (τ) and strain (ε) are

τ νε τ νε τ νε= − + + = − + + = − +θθ θθp T p T p2 2 2irr irr i i izz izz

�

(1)
τ νε τ νε τ νε= = =θ θ θ θ2 2 2 .ir ir i z i z izr izr

The stress consists of three parts: a hydrostatic pressure p 
because the cells are mostly water, an isotropic term propor-
tional to the strain with shear modulus ν, and a term T that rep-
resents a uniform stress caused by the growth and crowding of 
cells. Because we treat the colony as a continuum, ν contains 
contributions from both the intracellular cytoskeleton and 
intercellular adhesions (figure 1(b)). The intracellular stress-
strain relationship is illustrated schematically by the line of 
green springs in figure 1(c); a stretching of a spring, or strain, 
causes a restoring force, or stress (terms in (1) containing  

p and T are not illustrated in the spring analogy of figure 1(c)). 
The extracellular space has similar stress–strain relationships

 τ µε τ µε τ µε= − + = − + = − +θθ θθq q q2 2 2err err e e ezz ezz

�

(2)
τ µε τ µε τ µε= = =θ θ θ θ2 2 2 ,er er e z e z ezr ezr

where q is the extracellular pressure and µ is the extracellular 
shear modulus. The extracellular stress-strain relationship 
(2) is illustrated schematically by the line of blue springs in 
figure 1(c).

Previous analyses of the mechanical bidomain model 
assumed plane strain: no strain in the z direction of 
figure 1(a) (Roth 2013, 2015). Here we consider a thin layer 
of cells and assume plane stress: no stress in the z direc-
tion, τ τ τ τ τ τ= = = = = =θ θ 0izz i z izr ezz e z ezr . If the tissue is 
incompressible, ε ε ε+ + =θθ 0irr i izz , then τ = 0izz  implies that 

( )ν ε ε= − + θθp 2 irr i . A similar relationship exists in the extra-
cellular space.

We assume that the colony grows radially outward and 
looks the same in all directions, so the displacement has no θ 
component and all θ derivatives vanish. In that case, the strain 
is related to the intracellular displacement ur and extracellular 
displacement wr by
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The equations of mechanical equilibrium are
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The terms on the right-hand-sides of (4) represent the cou-
pling of the intra- and extracellular spaces by integrins (when 
we write ‘integrins’ this is short for ‘transmembrane mol-
ecules mechanically coupling the intracellular and extracel-
lular spaces’ and may include other molecules located at focal 
adhesions), where K is their spring constant density (Sharma 
et al 2015). The red springs in figure 1(c) represent the integ-
rins. The fundamental assumption of the mechanical bidomain 
model is that mechanotransduction occurs because forces on 
integrins initiate a cascade of biological responses. Therefore, 
in colonies of stem cells we expect differentiation to occur not 
where the intra- or extracellular stresses or strains are large, 
but instead where the difference ur  −  wr is large.

When we combine (1)–(4), we obtain the equations gov-
erning the intracellular and extracellular displacements
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(5)

The second derivative of the displacement implies that if the 
stretching of one intracellular (green) spring is greater than the 

Figure 1.  (a) A macroscopic view of a circular cell colony, of 
radius R. The distance from the center of the colony is r. The 
z direction is perpendicular to the colony. (b) A microscopic, 
schematic view of the cells along the dashed line in panel 
(a). The green ovals are individual cells, the blue mesh is the 
extracellular matrix, and the red dots are integrin proteins. (c) The 
1D mechanical bidomain model. The intracellular cytoskeleton is 
represented by the line of green springs, the extracellular matrix 
by the line of blue springs, and the integrins by the red springs. 
The bidomain is a macroscopic model, so the green, blue, and red 
springs do not represent individual cells but instead the behavior 
averaged over many cells. The stiffness of the green springs is 
represented by the intracellular shear modulus ν, the stiffness of the 
blue springs by the extracellular shear modulus µ, and the stiffness 
of the red springs by the integrin spring constant density K.
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stretching of the adjacent intracellular spring in figure 1(c), 
then there is a net force on the tissue between them that must 
be balanced by a force from the integrins (red spring). A force 
on the integrins is caused by the intracellular and extracellular 
ends of the integrin moving radially by different amounts, 
thereby stretching it. This picture is similar to the ‘tug-of-war’ 
mechanism proposed by Trepat and Fredberg (2011), except 
that in our model the extracellular space is also elastic and can 
move. The second and third terms on the left-hand-sides of (5) 
arise because of the cylindrical geometry.

3.  Results

To solve (5), we guess a solution of the form

σ σ
= + = +⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠u Ar BI

r
w Cr DI

r
,r r1 1� (6)

where A, B, C, D, and σ are unknown constants and I1 is a mod-
ified Bessel function (Abramowitz and Stegun 1970). If these 

solutions obey (5) then =C A, = − ν
µ

D B, and 
( )

σ = νµ
ν µ+K

4 . 

The parameter σ is a length constant that arises naturally in the 
mechanical bidomain model (Sharma et al 2015).

To determine A and B, we assume the intracellular and 
extracellular spaces are each stress free, τ τ= = 0irr err , at the 
outer edge of the colony, r  =  R. The resulting expressions for 
the displacements are
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This solution has features in common with other analytical 
solutions of the mechanical bidomain model (Roth 2013, 
2015, Sharma et al 2015). Each displacement consists of two 
terms. The first (monodomain) term is proportional to r. It is 
identical in the intra- and extracellular spaces so it does not 
contribute to the difference ur  −  wr and therefore does not 
affect the integrins and does not trigger stem cell differentia-
tion. The second (bidomain) term is different in the two spaces 
and does impact differentiation. If the length constant σ is 
small compared to the colony radius R, the Bessel function 
behaves similarly to an exponential (Abramowitz and Stegun 
1970) and is significant only within a few length constants of 
the edge
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In this case, the bidomain term is small compared to the 
monodomain term and the difference in displacements is

ν
σ− = − σ
−

u w
T

4
e .r r

r R
� (9)

Figure 2 shows plots of ur, wr, and ur  −  wr as functions of 
radius.

The stress and strain distributions are shown in figure 3. 
Throughout most of the colony, including near the center, the 
stress and strain are nearly constant (a linearly increasing dis-
placement corresponds to a constant strain). They vary near 
the edge of the colony in such a way that τirr and τerr go to zero 
at the boundary (r  =  R). If the stress or strain were responsible 
for mechanotransduction, then large effects would be seen at 
the center of the colony. Because the stress and strain are ten-
sors, their distribution depends on direction: the radial stress 
in the r direction, τrr, or the hoop stress in the θ direction, τθθ.

4.  Discussion

The mechanical bidomain model makes three novel predic-
tions about the elastic properties of cell colonies. First, the 
difference between the intracellular and extracellular displace-
ments has a very different distribution than the two displace-
ments individually (figure 2). There are large displacements 
in the interior of the colony but they are nearly the same in 
both spaces. Second, large stresses and strains exist in the 
interior of the colony (figure 3), whereas large differences 
in displacement exist primarily at the boundary (figure 2). 
The mechanical bidomain model is based on the hypothesis 
that differences in displacement are responsible for mecha-
notransduction. The gist of this hypothesis is that integrins  
(red springs in figure 1(c)) respond when they are stretched, 
and they are only stretched when the displacements in the intra-
cellular and extracellular spaces are different (Sharma et  al 
2015). If the two spaces each undergo complicated displace-
ments, but the displacements are the same in both spaces, then 
the integrins are not stretched. The predictions in figures  2 
and 3 provide a way to test this hypothesis experimentally 
by measuring if mechanotranduction occurs where the stress  

Figure 2.  The intracellular (ur) and extracellular (wr) 
displacements, and their difference (ur  −  wr), in a cell colony with 
radius R  =  1.5 mm, σ  =  R/10, ν  =  µ, and a negative value of T.  
The calculation is based on (7).

J. Phys. D: Appl. Phys. 50 (2017) 105401
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and strain are large, or where the difference in displacements 
is large. Third, the model predicts how the length constant σ 
depends on the shear moduli ν and µ, and the integrin spring 
constant density K (figure 4).

Our analysis of biomechanical forces in a colony of stem 
cells has many similarities with those presented by Edwards 
and Schwarz (2011), Banerjee and Marchetti (2012), and  
He et al (2014). Edwards and Schwarz’s spring constant k is 
analogous to our constant K, their localization length l is sim-
ilar to our length constant σ, and both their solution and ours 
contain the modified Bessel function I1. There are, however, 
differences in the two calculations. Edwards and Schwarz con-
sidered only the intracellular space (a monodomain model), 
whereas we account for both the intracellular and extracellular 
spaces (a bidomain model). As a result, their model did not 
predict the monodomain term proportional to r in (7), even 
though the monodomain term is often larger than the bidomain 
term (figure 2). Moreover, both Edwards and Schwarz (2011) 
and Banerjee and Marchetti (2012) interpreted the coupling 
term in (5) as representing cells attached to a microstructured 
surface consisting of an array of flexible elastomeric pillars, 
as are often used in traction force experiments (Style et  al 
2014). Our model, on the other hand, interprets this coupling 
as occurring via integrins. Therefore our coupling term takes 
on a different role than that in several previous models: in our 
model it is the signal that drives mechanotransduction. Our 
model could be applied to tissue colonies growing in vivo, 
as well as to cell monolayers cultured on a planar substrate. 
As µ goes to infinity in (7) only the intracellular bidomain 
term survives and we recover Edwards and Schwarz’s result. 
He et al (2014) interpreted the integrin coupling like we do 
in our model, and included elastic intracellular and extracel-
lular spaces. However, they applied their model to single cells 
interacting with a substrate, whereas our macroscopic model 
is applied to larger cell colonies.

Our model is consistent with the experimental observations 
of Rosowski et al (2015). Their colonies of human stem cells 
contain a band of differentiation at the colony edge, consistent 
with our (9), which predicts mechanotransduction acting 
through integrins should be largest at the edge (figure 2).  
They also found that this band of differentiated cells had a 
constant width regardless of the colony radius. Equation (9) 

predicts that differentiation should occur within a few length 
constants of the edge, where σ is independent of R. Finally, 
they observed larger traction forces near the edge of the 
colony compared to the interior. If we take our integrin force, 
K(ur  −  wr), as analogous to the traction force, then we too pre-
dict a larger force near the periphery.

Our results are consistent with previous analyses based on 
the mechanical bidomain model. For instance, when a tissue 
sheet is sheared the resulting expressions for the intracellular 
and extracellular displacements each contain two terms: a 
monodomain term that is common to both spaces and a bido-
main term that is responsible for forces on integrins (Sharma 
et al 2015). If σ  ≪  R, then the monodomain term is larger than 
the bidomain term, so measurements of tissue displacement are 
dominated by the monodomain term (figure 2). Experimental 
recordings of intracellular and extracellular displacements 
would need to be extremely precise in order to measure 
accurately their small difference. Moreover, the monodo-
main term implies that both the intracellular and extracellular 
spaces experience large, nearly uniform strains (figure 3).  
If one adopted the hypothesis that the intracellular stress 
or strain causes stem cell differentiation, one would expect 
differentiation to be distributed throughout the colony. 
However, if one adopts the hypothesis that the difference 
between the intracellular and extracellular displacements 
drives differentiation, then the model predicts that differentia-
tion is confined to the edge of the colony.

Figure 3.  The intracellular and extracellular (a) strain, and (b) stress, in a cell colony with radius R  =  1.5 mm, σ  =  R/10, ν  =  µ,  
and a negative value of T. The calculation is based on (1)–(3) and (7).

Figure 4.  The length constant σ as a function of the extracellular 
shear modulus µ.

J. Phys. D: Appl. Phys. 50 (2017) 105401
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One difference of this analysis and our previous calcul
ations based on the mechanical bidomain model (Roth 2013, 
2015, Sharma et al 2015) is that we assume plane stress rather 
than plane strain. Interestingly, if this example is solved using 
plane strain then p  =  T and ur  =  wr  =  0, so there is no mecha-
notransduction. The assumption of plane stress is therefore 
crucial for application of the model to monolayers of cells.

Our model provides insight into how the displacements 
depend on the model parameters such as the intracellular and 
extracellular shear moduli ν and µ. For instance, if the cells 
are grown on a stiff substrate so that µ  ≫  ν, the length con-
stant σ governing the width of the differentiated layer becomes 

/σ ν= K4 , independent of µ. On the other hand, if cells are 
grown on a flexible substrate so µ  ≪  ν, then /σ µ= K4  
and σ decreases as µ decreases. Figure  4 plots σ versus µ, 
assuming constant values of ν and K. Analyzing the behavior 
of the model as a function of µ may be important, as stem cells 
differentiate into various cell types depending on the extracel-
lular matrix stiffness (Engler et al 2006).

In our continuum model ν is a macroscopic parameter 
found by averaging over many cells and reflects both the 
cytoskeleton and cell–cell junctions. To understand this, con-
duct a thought experiment in which you dissolve away the 
extracellular matrix and then pull on the outer cells of the 
colony. How well this force is transmitted to the interior cells 
determines ν. If there were no cell–cell junctions ν would 
vanish, as in the case of a sparse culture where cells are not 
in contact with each other (Engler et al 2006). Cell–cell junc-
tions can be modulated by modifying the number of cadherin-
based intercellular adhesions (Mertz et al 2013, Schlüter et al 
2015, Gonzalez-Valverde et  al 2016). Therefore, modifica-
tions of cadherins should impact the width of the differentia-
tion layer unless ν  ≫  µ, in which case σ is insensitive to the 
strength of cadherin coupling. We assume the distribution of 
cadherins is static, but it may change dynamically (Schlüter 
et al 2015).

If fewer integrins are present (or if their ability to couple 
the intracellular and extracellular spaces is compromised) 
their macroscopic spring constant density K will decrease, 
widening the layer of differentiated cells. In previous studies 
using the mechanical bidomain model, the value of the param
eter K was not known. The data of Rosowski et  al (2015) 

allows us to estimate K using 
( )

σ = νµ
ν µ+K

4  with σ  =  150 µm. 

In order to calculate K accurately, we would need values of  
ν and µ for the specific stem cell colonies grown by Rosowski 
et al. Because these values were not measured, we must settle 
for an order-of-magnitude estimate. Shear moduli in soft tissues 
are on the order of 1000 Pa (Rehfeldt et al 2007). If we assume 
this value applies to both ν and µ, then K is on the order of 1011 
Pa m−2. The units of K are not the units of a spring constant 
because K is a macroscopic density that depends on the product 
of three factors: the spring constant of an individual integrin  
(N m–1, or Pa m), the density of integrins in the membrane  
(1/m2), and the ratio of membrane surface area to tissue 
volume (1/m). In other words, K is a spring constant per unit 
volume (N/m/m3  =  Pa m–2).

The parameter T in our model represents the growth 
and crowding of cells. A positive value of T corresponds to 
an active tension like in contractile muscle. For a growing 
colony, T is negative and corresponds to ‘growing pressure’: 
As cells divide and enlarge they exert an outward stress on 
their neighbors. In (1) we include T in only the intracellular 
space, although if the cells are also producing additional 
extracellular matrix we may need a term like T in the extracel-
lular space too.

Although our model is useful, it is based on several assump-
tions that limit its applicability.

	 1.	We assume the strains are small and linear. Most biome-
chanical models consider finite, nonlinear strains (Fung 
1981). Our assumption may be reasonable for a stem cell 
colony, but nevertheless does represent an approximation.

	 2.	We assume plane stress, which implies that there are 
no stresses in the plane perpendicular to the colony (the  
z direction). This should be a good approximation for a 
monolayer, but in a thicker tissue sample or for a thick 
extracellular substrate this assumption may break down.

	 3.	We assume that the integrin spring constant density is 
linear, Hookean, and isotropic. We have no evidence 
about the spring constant properties and adopt this 
assumption as the simplest case. Furthermore, we assume 
the distribution of integrins is static, although it may be 
dynamic and respond to mechanotransduction signals 
(Wolfenson et al 2014).

	 4.	We assume the cell colony is circular with no dependence 
on angle, allowing us to obtain an analytical solution to 
the model equations. More complicated colony geom-
etries, such as those studied by Ruiz and Chen (2008), 
will require numerical analysis. Numerical methods for 
solving the equations of the mechanical bidomain model 
are being developed (Sharma et al 2015, Gandhi and Roth 
2016).

	 5.	We assume that cell growth, represented in our model as 
tension T, occurs uniformly and isotropically throughout 
the tissue ( /∂ ∂ =T r 0). This may be one of our weaker 
assumptions, as a feedback loop may exist between forces 
on integrins and cell growth, so that T could be a function 
of ur  −  wr. Rosowski et al (2015) observed distinct actin 
organization and greater myosin activity near the edge 
of the colony, implying that T could be nonuniform. An 
interesting area of future research would be to analyze 
such a feedback loop using the mechanical bidomain 
model.

	 6.	We assume T is isotropic in the r–θ plane, which is dif-
ferent from muscle where T acts along the myofiber axis 
(Roth 2013). The data in Rosowski et al (2015) do not 
suggest that the cell colony is anisotropic. Feedback may 
cause the long axis of cells (and presumably T) to align 
with the direction of greatest intracellular stress (Bischofs 
and Schwarz 2003, Bischofs et  al 2004, Zemel et  al 
2010), an effect not included in our model.

	 7.	We assume that the passive elastic shear moduli of the cells 
and matrix are uniform and isotropic. Mechanosensing 
cells can align with the direction of large stiffness 
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(Bischofs and Schwarz 2003, Bischofs et al 2004, Zemel 
et al 2010). Our model does not include such an effect. 
Moreover, cells can respond to gradients in extracellular 
matrix stiffness (Sunyer et al 2016), but our model and 
the experiments of Rosowski et al (2015) do not include 
this mechanism. A stiffness gradient could be incorpo-
rated into the model by making µ a function of position.

	 8.	We do not include T in the expression for the stress in 
the z-direction, τizz, because we assume cells grow as a 
monolayer adherent on a 2D substrate. A growing sphere 
of cells would require T to act in all directions.

	 9.	We assume that the tissue is in steady-state mechanical 
equilibrium, whereas cell colonies are constantly growing. 
Growth is slow enough that inertial terms need not be 
included in the mechanical equations, but processes may 
exist that lower membrane stress over time. For instance, 
bonds between integrins and the extracellular matrix may 
break and then reform after the extracellular stress is 
relieved. Our model does not contain such viscoelastic 
behavior that may be necessary to describe growth over 
hours, days, or weeks. For example, Kim et al (2013) have 
studied advancing monolayer sheets of Madin-Darby 
canine kidney (MDCK) epithelia cells. The mechanical 
bidomain model cannot be used to represent such systems 
unless this dynamic growth process is included in the 
mathematical description.

	10.	The mechanical bidomain model is a continuum model 
that averages over the discrete cellular properties. The 
assumption of a continuum should be valid as long as all 
the length scales of the problem are large compared to 
the size of individual cells. The length constant σ is a few 
hundred microns, which is larger than the cell size but 
not dramatically so. Thus, the assumption of a continuum 
may provide a useful macroscopic prediction of the 
overall distribution of stress and strain, but microscopic 
cellular or even molecular effects may modulate our 
results (Bischofs and Schwarz 2003, Bischofs et al 2004, 
Engler et al 2006, Vermolen and Gefen 2012, Gonzalez-
Valverde et al 2016).

	11.	The fundamental hypothesis of the mechanical bidomain 
model is that mechanotransduction effects, such as stem 
cell differentiation, are driven by forces on integrin pro-
teins in the membrane. The alternative hypothesis—that 
mechanotransduction is caused by stress or strain—results 
in a very different prediction of where differentiation 
occurs. Yet another hypothesis is that cells respond to 
strain energy (Vermolen and Gefen 2012). We interpret 
the experimental observation of edge effects in cell colo-
nies by Rosowski et al (2015) and others (Nelson et al 
2005, Ruiz and Chen 2008, Mertz et al 2012, Warmflash 
et al 2014) as support for our hypothesis that forces on 
integrins cause mechanotransduction.

Human embryonic stem cell colonies are an in vitro model 
used to study the mechanisms of development. If the mechan-
ical bidomain model accurately predicts the behavior of these 
colonies, it may similarly provide insight into the far more 
complex process of human development.

References

Abramowitz M and Stegun I A 1970 Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables 
(New York: Dover) pp 355–433

Banerjee S and Marchetti M C 2012 Contractile stresses in cohesive 
cell layers on finite-thickness substrates Phys. Rev. Lett. 
109 108101

Bischofs I B and Schwarz U S 2003 Cell organization in soft 
media due to active mechanosensing Proc. Natl Acad. Sci. 
100 9274–9

Bischofs I B, Safran S A and Schwarz U S 2004 Elastic interactions 
of active cells with soft materials Phys. Rev. E 69 021911

Edwards C M and Schwarz U S 2011 Force localization in 
contracting cell layers Phys. Rev. Lett. 107 128101

Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix 
elasticity directs stem cell lineage specification Cell 
126 677–89

Fung Y C 1981 Biomechanics: Mechanical Properties of Living 
Tissues (New York: Springer)

Gandhi S and Roth B J 2016 A numerical solution of the 
mechanical bidomain model Comput. Methods Biomech. 
Biomed. Eng. 19 1099–106

Gonzalez-Valverde I, Semino C and Garcia-Aznar J M 2016 
Phenomenological modelling and simulation of cell clusters in 
3D cultures Comput. Biol. Med. 77 249–60

He S, Su Y, Ji B and Go H 2014 Some basic questions on 
mechanosensing in cell-substrate interaction J. Mech. Phys. 
Solids 70 116–35

Kim J H et al 2013 Propulsion and navigation within the advancing 
monolayer sheet Nat. Mater. 12 856–63

Mertz A F, Banerjee S, Che Y, German G K, Xu Y, Hyland C, 
Marchetti M C, Horsley V and Dufresne E R 2012 Scaling of 
traction forces with the size of cohesive cell colonies  
Phys. Rev. Lett. 108 198101

Mertz A F, Chea Y, Banerjee S, Goldstein J M, Roswoski K A, 
Revilla S F, Niessene C M, Cristina Marchetti M, Dufresne E R 
and Horsley V 2013 Cadherin-based intercellular adhesions 
organize epithelial cell-matrix traction forces Proc. Natl Acad. 
Sci. 110 842–7

Nelson C M, Jean R P, Tan J L, Liu W F, Sniadecki V J, 
Spector A A and Chen C S 2005 Emergent patterns of growth 
controlled by multicellular form and mechanics Proc. Natl 
Acad. Sci. 102 11594–9

Puwal S and Roth B J 2010 Mechanical bidomain model of cardiac 
tissue Phys. Rev. E 82 041904

Rehfeldt F, Engler A J, Eckhardt A, Ahmed F and 
Descher D E 2007 Cell responses to the mechanochemical 
microenvironment—implications for regenerative medicine and 
drug delivery Adv. Drug Del. Rev. 59 1329–39

Rosowski K A, Mertz A F, Norcross S, Dufresne E R and Horsley V 
2015 Edges of human embryonic stem cell colonies display 
distinct mechanical properties and differentiation potential  
Sci. Rep. 5 14218

Roth B J 2013 Boundary layers and the distribution of membrane 
forces predicted by the mechanical bidomain model Mech. Res. 
Commun. 50 12–6

Roth B J 2015 Using the mechanical bidomain model to analyze the 
biomechanical behavior of cardiomyocytes Cardiomyocytes: 
Methods and Protocols ed G R Skuse and M C Ferran  
(New York: Humana Press) pp 93–102

Ruiz S A and Chen C S 2008 Emergence of patterned stem cell 
differentiation within multicellular structures Stem Cells 
26 2921–7

Schlüter D K, Ramis-Conde I and Chaplain M A J 2015 Multi-scale 
modelling of the dynamics of cell colonies: insights into cell-
adhesion forces and cancer invasion from in silico simulations 
J. R. Soc. Interface 12 20141080

J. Phys. D: Appl. Phys. 50 (2017) 105401

https://doi.org/10.1103/PhysRevLett.109.108101
https://doi.org/10.1103/PhysRevLett.109.108101
https://doi.org/10.1073/pnas.1233544100
https://doi.org/10.1073/pnas.1233544100
https://doi.org/10.1073/pnas.1233544100
https://doi.org/10.1103/PhysRevE.69.021911
https://doi.org/10.1103/PhysRevE.69.021911
https://doi.org/10.1103/PhysRevLett.107.128101
https://doi.org/10.1103/PhysRevLett.107.128101
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1080/10255842.2015.1105964
https://doi.org/10.1016/j.compbiomed.2016.08.019
https://doi.org/10.1016/j.compbiomed.2016.08.019
https://doi.org/10.1016/j.compbiomed.2016.08.019
https://doi.org/10.1016/j.jmps.2014.05.016
https://doi.org/10.1016/j.jmps.2014.05.016
https://doi.org/10.1016/j.jmps.2014.05.016
https://doi.org/10.1038/nmat3689
https://doi.org/10.1038/nmat3689
https://doi.org/10.1038/nmat3689
https://doi.org/10.1103/PhysRevLett.108.198101
https://doi.org/10.1103/PhysRevLett.108.198101
https://doi.org/10.1073/pnas.1217279110
https://doi.org/10.1073/pnas.1217279110
https://doi.org/10.1073/pnas.1217279110
https://doi.org/10.1073/pnas.0502575102
https://doi.org/10.1073/pnas.0502575102
https://doi.org/10.1073/pnas.0502575102
https://doi.org/10.1103/PhysRevE.82.041904
https://doi.org/10.1103/PhysRevE.82.041904
https://doi.org/10.1016/j.addr.2007.08.007
https://doi.org/10.1016/j.addr.2007.08.007
https://doi.org/10.1016/j.addr.2007.08.007
https://doi.org/10.1038/srep14218
https://doi.org/10.1038/srep14218
https://doi.org/10.1016/j.mechrescom.2013.02.004
https://doi.org/10.1016/j.mechrescom.2013.02.004
https://doi.org/10.1016/j.mechrescom.2013.02.004
https://doi.org/10.1634/stemcells.2008-0432
https://doi.org/10.1634/stemcells.2008-0432
https://doi.org/10.1634/stemcells.2008-0432
https://doi.org/10.1098/rsif.2014.1080
https://doi.org/10.1098/rsif.2014.1080


D Auddya and B J Roth﻿

7

Sharma K, Al-Asuoad N, Shillor M and Roth B J 2015 Intracellular, 
extracellular, and membrane forces in remodeling and 
mechanotransduction: the mechanical bidomain model  
J. Coupled Syst. Multiscale Dyn. 3 200–7

Style R W, Boltyanskiy R, German G K, Hyland C, MacMinn C W, 
Mertz A F, Wilen L A, Xu Y and Dufresne E R 2014 
Traction force microscopy in physics and biology Soft Matter 
10 4047–55

Sun Y, Chen C S and Fu J 2012 Forcing stem cells to behave: A 
biophysical perspective of the cellular microenvironment  
Annu. Rev. Biophys. 41 519–54

Sunyer R et al 2016 Collective cell durotaxis emerges from long-
range intercellular force transmission Science 353 1157–61

Trepat X and Fredberg J J 2011 Plithotaxis and emergent dynamics 
in collective cellular migration Trends Cell Biol. 21 638–46

Vermolen F J and Gefen A 2012 A semi-stochastic cell-based 
formalism to model the dynamics of migration of cells in 
colonies Biomech. Model Mechanobiol. 11 183–95

Warmflash A, Sorre B, Etoc F, Siggia E D and Brivanlou A H  
2014 A method to recapitulate early embryonic spatial 
patterning in human embryonic stem cells Nat. Methods 
11 847–54

Wolfenson H, Lavelin I and Geiger B 2014 Dynamic regulation 
of the structure and functions of integrin adhesions Dev Cell 
24 447–58

Yim E K F and Sheetz M P 2012 Force-dependent cell signaling in 
stem cell differentiation Stem Cell Res. Ther. 3 41

Zemel A, Rehfeldt F, Brown A E X, Discher D E and Safran S A 
2010 Optimal matrix rigidity for stress fiber polarization in 
stem cells Nat. Phys. 6 468–73

J. Phys. D: Appl. Phys. 50 (2017) 105401

https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1166/jcsmd.2015.1079
https://doi.org/10.1039/c4sm00264d
https://doi.org/10.1039/c4sm00264d
https://doi.org/10.1039/c4sm00264d
https://doi.org/10.1146/annurev-biophys-042910-155306
https://doi.org/10.1146/annurev-biophys-042910-155306
https://doi.org/10.1146/annurev-biophys-042910-155306
https://doi.org/10.1126/science.aaf7119
https://doi.org/10.1126/science.aaf7119
https://doi.org/10.1126/science.aaf7119
https://doi.org/10.1016/j.tcb.2011.06.006
https://doi.org/10.1016/j.tcb.2011.06.006
https://doi.org/10.1016/j.tcb.2011.06.006
https://doi.org/10.1007/s10237-011-0302-6
https://doi.org/10.1007/s10237-011-0302-6
https://doi.org/10.1007/s10237-011-0302-6
https://doi.org/10.1038/nmeth.3016
https://doi.org/10.1038/nmeth.3016
https://doi.org/10.1038/nmeth.3016
https://doi.org/10.1016/j.devcel.2013.02.012
https://doi.org/10.1016/j.devcel.2013.02.012
https://doi.org/10.1016/j.devcel.2013.02.012
https://doi.org/10.1186/scrt132
https://doi.org/10.1186/scrt132
https://doi.org/10.1038/nphys1613
https://doi.org/10.1038/nphys1613
https://doi.org/10.1038/nphys1613

