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1 Introduction
In applied science a wide class of problems involve moving boundary [1],[2] or phase changes
that arise as a result of heat conduction with moving boundary conditions. One such classical
example is the Stefan problem [3] which has been traditionally used as a basis of physical
models in ice formation, evaporation, condensation etc. It gives a description of evolution of
the boundary between two phases, and the heat equation is solved in those phases individually
to obtain temperature distribution constrained with boundary and initial conditions (Page 151,
[4]). In this project we aim to address couple of analytical methods which solve the Stefan
problem and gives an intuitive understanding of the physics behind it. The methods discussed
here are:

• The similarity solution method [5] which depend on certain groupings of the independent
variables, rather than on each variable separately.

• Perturbation method are a class of analytical methods for determining approximate solu-
tions of nonlinear equations for which exact solutions cannot be obtained [6]

• Mixed variable analysis also called multiple scale analysis in which the solutions depend
simultaneously on multiple scales [7]

• Polynomial analysis which is used to approximate solutions to a PDE using substitutions
[8]

• Crank Nicholson finite difference scheme to numerically evaluate characteristics of the
moving boundary problem [9]

The following assumptions are used in most of the analytical methods

• All material properties are constant in the two phases

• Only solid-liquid interface problems are studied

• No viscous dissipation or turbulence is accounted for in the analysis.

• Internal thermodynamics or specifically internal heat generation is neglected.

2 Analytical Approach I: Similarity Solution
For the similarity solution three different situations (a) Solidification of a pure material in a
superheated melt in which three different phases are considered and their dynamics solved using
analytical techniques along with validating some results (b) Solidification of a pure material in
an undercooled melt which considers two different phases. The interface evolution is first solved
using standard methods and then plotted to visualise their patterns, and (c) A single phase is
considered taking into account interface attachment kinetics in which the interface’s velocity
depends on the temperature difference.

2.1 Example I: Solidification of a pure material in a superheated melt

2.1.1 General Framework

For each of these scenarios, three distinct phases are considered and their energy balance equa-
tion (Conversion of Fick’s first law, Page 339, [10]) in the reduced order form are written
below:

∂uν
∂t

= ζν
∂2uν
∂x2 (1)
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where ν = m, s, l refers to mold, solid, liquid respectively which means the three phases. In
this equation ζν = kν/ρνcν represents the thermal diffusivity of the material or phase ν. The
governing equation, boundary and initial conditions for the mold domain are:

∂um
∂t

= ζm
∂2um
∂x2 −∞ < x ≤ 0 (2)

um = u0 x→∞ (3)
um = ums x = 0 (4)

km
∂um
∂x

= ks
∂us
∂x

x = 0 (5)

um = u0 t = 0 (6)

At the interface between mold and solid it can be seen that there are two boundary conditions
x = 0. That is because the interface temperature between solid and mold is not known. Also
the heat flux is continuous across the mold solid interface. The temperature distribution across
the layers obeys u ∈ C1 continuity condition. The governing equations for solid are:

∂us
∂t

= ζs
∂2us
∂x2 0 ≤ x ≤ x∗(t) (7)

us = ums x = 0 (8)

km
∂um
∂x

= ks
∂us
∂x

x = 0 (9)

us = uf x = x∗(t) (10)

ρsLf
dx∗

dt
= ks

∂us
∂x
− kl

∂ul
∂x

x = x∗(t) (11)

The solid doesn’t have an initial condition because the solidifying material is initially entirely
liquid. At the solid liquid interface few boundary conditions need to applied as the position of
the interface x∗(t) is not known. The temperature of the interface is given as Tf = uf . The
second condition at the interface is known as the Stefan condition.

Figure 1: Superheated Solidification
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Finally for the liquid phase the governing equations are:

∂ul
∂t

= ζl
∂2ul
∂x2 x∗ ≤ x <∞ (12)

ul = u∞ x→∞ (13)
ul = uf x = x∗(t) (14)

ρsLf
dx∗

dt
= ks

∂us
∂x
− kl

∂ul
∂x

x = x∗(t) (15)

ul = u∞ t = 0 (16)

The analytical method [11],[12],[13],[14] used for all the three phases is presented after which
boundary conditions are applied in all three phases to capture specific distributions. Similarity
solution (General similarity solution of the heat equation, Page 4, [15]) method is used to analyse
this PDE.

2.1.2 Similarity Solution

In the realm of partial differential equations there is an approach which identifies certain group-
ings of the independent variables rather than pure dependence on each of them separately
which in turn converts it into an ordinary differential equation.While previous literature (A
similarity solution, Page 3, [16]),(The classical Stefan problem, Page 3, [17]) used the analytical
results to deal with solidification in binary alloys and fluid flow, a thorough derivation has been
overlooked. The dilation transformation is introduced by:

X̄ = aαx, T̄ = aβt, ūν(X̄, T̄ ) = aγuν(x, t) (17)

x = a−αX̄, t = a−βT̄ , uν(x, t) = a−γ ūν(X̄, T̄ ) (18)

∂ūν

∂T̄
= aγ

∂uν

∂T̄
= aγ

∂uν
∂t

∂t

∂T̄
= aγ−β

∂uν
∂t

(19)

∂ūν

∂X̄
= aα

∂uν
∂x

∂x

∂X̄
= aγ−α

∂uν
∂x

∂2ūν

∂X̄2 = aγ−2α∂
2ūν
∂x2 (20)

According to the similarity solution if u(t, x) solves the original equation, then Ū(T̄ , X̄) satisfies
the equation as well. Using this proposition:

(Ūν)T̄ − ζν(Ūν)X̄X̄ = aγ−β(uν)t − ζνaγ−2α(uν)xx

Comparing the left and right hand of side of the above equation it can be said that if Ū solves
the equation as u, the common factor must be equal. This means that:

aγ−β = aγ−2α =⇒ β = 2α (21)

thereby establishing a relationship between the two exponents and γ may be arbitrary. This is
valid for all the three phases in consideration.

The next task is to find out the exponents p, q which satisfies the relation below. This is
done to ensure that the following combinations are unchanged upon transformation.

X̄T̄ p = xtp Ūν T̄
q = uνt

q (22)
X̄T̄ p = a−αX̄a−βpT̄ p (23)

Using relation (21) it can be shown that

α+ 2αp = 0 =⇒ p = −1
2 (24)
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Thus it can be said that xt−1/2 is the absolute invariant and also represents the characteristic
variable. This idea can be extended to make it a dimensionless quantity by tweaking the
denominator and rewriting the expression which we shall use later.

x√
ζvt

= dimensionless = ην (25)

An interesting fact to note here is that if we equate the above to 1, the resulting expression of
x is also known as diffusion distance. Similarly, one can obtain an expression for q by using the
second relation in (22)

Ūν T̄
q = aγuν(aβt)q = aγ+2αquνt

q =⇒ q = − γ

2α (26)

Since the exponent of a needs to be zero we could derive the following expression.
The parameters p, q are important because they help in setting up a relation between the

actual solution and the new characteristic variable using the expression:

uν(x, t) = t−qg(xtp) = t
γ
2α g(xt−

1
2 ) = t

γ
2α g(ξ) = t

γ
β g(ξ) (27)

where ξ is the characteristic variable.
Substituting (27) into (1) we obtain the following.

(uν)t = γ

β
t
γ
β
−1
g(xt−

1
2 ) + t

γ
β g′(xt−

1
2 )(−1

2xt
− 3

2 ) = γ

β
t
γ
β
−1
g(ξ)− 1

2 t
γ
β
−1
ξg′(ξ) (28)

(uν)xx = t
γ
β
−1
g′′(ξ) (29)

From the above it can be rewritten according to (1)

(uν)t − ζν(uν)xx = γ

β
t
γ
β
−1
g(ξ)− 1

2 t
γ
β
−1
ξg′(ξ)− ζνt

γ
β
−1
g′′(ξ)

= t
γ
β
−1(γ

β
g(ξ)− 1

2ξg
′(ξ)− ζνg′′(ξ)) = 0

Since t cannot be equal to 0, we can consider the following expression below as zero and convert
the original PDE into an ODE with the characteristic variable as its independent variable.

ζνg
′′(ξ) + 1

2ξg
′(ξ)− γ

β
g(ξ) = 0 (30)

To simplify one can use (4) to evaluate boundary values of g.

um(0, t) = ums =⇒ ums = g(0)t
γ
β (31)

Since it is assumed that ums is a constant (which we shall find an analytical expression for
eventually) meaning the exponent of t must be zero. Hence γ = 0 and (30) can be rewritten as

ζνg
′′(ξ) + 1

2ξg
′(ξ) = 0 (32)

Using the integrating factor method for linear homogeneous ODEs the following is derived for
g(ξ)

g′(ξ) = C1e
−
∫

ξ
2ζν

dξ = C1e
− ξ2

4ζν (33)

g(ξ) = C0 + C1e
−
∫ ξ

0
χ2
4ζν

dχ = C0 + C2erf(
ξ√
4ζν

) = C0 + C2erf(
x

2
√
ζνt

) (34)
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2.1.3 Temperature distribution of mold

As the characteristic equation differs only in terms of the thermal diffusivity and the boundary
conditions it can be said that for all three phases the equation has a general form:

uν = Aν +Bνerf(
x

2
√
ζνt

) (35)

Since the equation (34) obtains a general solution for the different phases one can utilise this
for obtaining temperature distribution in the mold phase to begin with um(x, t).

um(0, t) = C0 + C2erf(0) = ums =⇒ C0 = ums (36)
um(−∞, t) = ums + C2erf(−∞) = u0 =⇒ C2 = ums − u0 (37)

The above relation is established using the identity

2√
π

∫ ∞
0

e−t
2
dt = 1 (38)

Thus, for the mold phase the general solution can be written as

um(x, t) = ums + (ums − u0)erf( x

2
√
ζmt

) −∞ < x ≤ 0 (39)

2.1.4 Temperature distribution of solid

At this point, though we have stated that ums is a constant, it is unknown and needs to be
calculated. The second way by which ums can be evaluated, since most boundary conditions of
the mold phased are used, is by considering the adjacent solid phase. The general solution for
this phase can be written in the form of (35).

us = As +Bserf(
x

2
√
ζst

) (40)

Applying (8) and (10) the general expression is rewritten as

us(0, t) = As +Bserf(0) = ums =⇒ As = ums (41)

us(x∗(t), t) = uf = ums +Bserf(
x∗(t)
2
√
ζst

) (42)

Since the interface temperatures uf and ums are assumed to be constant, therefore the error
function must be a constant as well. Thus it implies, x∗(t) is proportional to 2

√
ζst.

x∗(t) = 2φ
√
ζst (43)

where φ is a constant and will be determined eventually. However the above gives a general
solution for the boundary evolution of the solid and liquid phases.

Now we can calculate Bs from (42) using the above

uf = ums +Bserf(φ) =⇒ Bs = uf − ums
erf(φ) (44)

∴ us = ums + uf − ums
erf(φ) erf( x

2
√
ζst

) 0 ≤ x ≤ x∗(t) (45)
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2.1.5 Temperature of solid-mold interface

Since we have analytical expression for all components of the temperature distribution equation
in the solid (45) and mold (39) phase, the interface temperature ums can be evaluated using
flux condition of (9)

km
∂

∂x
(ums + (ums − u0)erf( x

2
√
ζmt

)) = ks
∂

∂x
(ums + uf − ums

erf(φ) erf( x

2
√
ζst

)) (46)

The expression
√
kνρνcpν = Φν is known as effusivity (Results and Discussion, Page 4, [18]) of

the material and will be used here. Derivative of the error function can be written in the form.
∂

∂x
erf(u) = 2√

π
e−u

2 ∂u

∂x
(47)

Rearranging terms we have:

Φm(ums − u0) = Φs

erf(φ)(uf − ums)

(erf(φ)Φm + Φs)ums = erf(φ)Φmu0 + Φsuf

The mold-solid interface temperature is thus,

ums = erf(φ)Φmu0 + Φsuf
erf(φ)Φm + Φs

(48)

2.1.6 Temperature distribution of liquid

The solution for temperature in the liquid phase is obtained by replacing time derivative of (43)
into (15). We begin with the general solution for the liquid phase

ul = Al +Blerf(
x

2
√
ζlt

) (49)

Using (13) and (16) into (49) one obtains

ul = Al +Blerf(+∞) = u∞ =⇒ Al +Bl = u∞ (50)

Also using (14) into (49) another relation is observed

uf = Al +Blerf(
x∗(t)
2
√
ζlt

) (51)

Replacing (43) the following is obtained

uf = Al +Blerf(φ
√
ζs
ζl

) (52)

Since we have two equations, (50) and (52) with two unknowns it is easy to obtain expressions
for Al and Bl

Al =
uf − u∞erf(φ

√
ζs
ζl

)

erfc(φ
√

ζs
ζl

)
Bl = u∞ − uf

erfc(φ
√

ζs
ζl

)
(53)

where erfc = 1− erf. Now plugging these into (49) we obtain

ul =
uf − u∞erf(φ

√
ζs
ζl

)

erfc(φ
√

ζs
ζl

)
+ u∞ − uf

erfc(φ
√

ζs
ζl

)
erf( x

2
√
ζlt

)

A cleaner version of the above is given as:

ul = u∞ −
u∞ − uf

erfc(φ
√

ζs
ζl

)
erfc( x

2
√
ζlt

) x∗(t) ≤ x <∞ (54)
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2.1.7 Determination of parameter φ

In order to find the parameter φ the Stefan condition (15) is utilised. Plugging in the values
from (45),(48) and (54) the following relation is obtained.

ρsLfφ

√
ζs
t

= ks(
uf − ums
erf(φ)

1√
πζst

exp(− x

2
√
ζst

)2)− kl(
u∞ − uf

erfc(φ
√

ζs
ζl

)
1√
πζlt

exp(− x

2
√
ζlt

)2) (55)

Rearranging the above we get the following transcendental equation for φ, which is usually
solved using graphical methods.

(
φexp(φ2)− cps(u∞ − uf )

Lf
√
π

exp([1− ζs/ζl]φ2)
erfc(φ

√
ζs/ζl)

√
Φl

Φs

)
×
(
erf(φ) +

√
Φs

Φm

)
= cps(uf − u0)

Lf
√
π

= Ste√
π

(56)
The Stefan number is given by the expression

Ste = cps(uf − u0)
Lf

(57)

Equation (56) gives only a constant which determines the factor of proportionality for evolution
of the interface between the solid and liquid phases.

This equation can be solved graphically by assuming couple of values for the parameters
given and determining the proportionality constant

2.1.8 Graphical estimation of φ

To determine φ some sample parameters [4] are used which are as follows along with Lf =
3.98× 105J/kg:

Material Temperature
C

Thermal conductivity
Wm−1K−1

Specific Heat
Jkg−1K−1

Density
kgm−3

Mold 25 100 1700 2200
Solid 660 211 1190 2555
Liquid 700 91 1090 2368

Inserting the above values in (56), we obtain the following expression for φ

(φexpφ2 − 0.041exp(−0.968φ2)
erc(1.403φ) )× (erf(φ) + 1.304) = f(φ) = Ste√

π
= 1.071 (58)

In order to find out the roots of the above equation we need to find out the residual and set it
to zero. Accordingly, we have the expression as:

g(φ) = f(φ)− Ste√
π

= 0 (59)

The plot below indicates that the residual function intersects the zero ordinate when the value
of φ is about 0.52. Hence this can be replaced back into the interface evolution equation and into
(48),(54),(45),(39) from which we obtain the following expressions of temperature distributions
for this example case

x∗(t) = 8.7× 10−3√t (60)

um = 474 + 443erf(97.05 x√
t
) (61)

us = 474 + 346erf(61.9 x√
t
) (62)

ul = 698− 135erfc(85.3 x√
t
) (63)
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Figure 2: Determination of φ using graphical method

In conclusion to the first task we calculated the temperature distribution in three phases as well
as the interface temperatures and their evolution in a superheated melt.

2.2 Example II: Solidification of a pure material in an undercooled melt

Figure 3: Supercooled Solidification

A one dimensional solidification of a pure material with a planar front growing into an
undercooled melt (Appendix II, Page 122, [19]) is considered (Fig 2). Since the interface has
a higher temperature than both the semi infinite end (liquid) as well as the solid, heat starts
flowing out of the interface in both solid and liquid. The goal here is to track the evolution
of the interface as well as determining the temperature distributions in the two phases. In
addition to this, interface attachment kinetics (Section VII: Towards predictive capability
of rapid solidification in commercial alloys, Page 10, [20]) is introduced and analytical solutions
are derived for a case involving freezing consisting of an isothermal solid and an undercooled
melt.

12



2.2.1 General framework and field distributions

Referring to Fig 3, it is seen that the semi infinite melt begins at uf > u∞. Also when time
t = 0, the left hand side of the boundary cools to us = u0, u0 < uf . This is a classic case of
bidirectional heat flow from the interface to the solid and liquid phases. The governing equations
for the two phases are as follows:

∂us
∂t

= ζs
∂2us
∂x2 0 ≤ x ≤ x∗(t) (64)

∂ul
∂t

= ζl
∂2ul
∂x2 x∗(t) ≤ x <∞ (65)

us = u0 x = 0 (66)
ul = u∞ x→∞ (67)

us = ul = uf x = x∗(t) (68)

ks
∂us
∂x
− kl

∂ul
∂x

= ρLf
dx∗

dt
x = x∗(t) (69)

The above problem can be solved in a similar manner using the similarity solution. Since the
governing equation is the same as in the previous equation in which the temperature distribution
had a general solution. Hence rewriting (35)

uν = Aν +Bνerf(
x

2
√
ζνt

)

For the solid phase, replacing (35) with (66) we obtain

As = u0

Since the interface temperature is a constant in this case we can say that the argument in erf
is a constant. Thus the modified equation is:

uf = u0 +Bserf(φ)

where φ is the proportionality constant as seen in the previous section. Thus the final version
of the temperature distribution in the solid phase based on the boundary conditions are:

us = u0 + uf − u0
erf(φ) erf( x

2
√
ζst

) (70)

For the liquid region, the analysis is performed in a similar way in which we obtain the values
of the general solution parameters Al and Bl as

Al = u∞ Bl = uf − u∞
erfc(φ

√
ζs/ζl)

erfc( x

2
√
ζlt

)

Thus, temperature distribution in the liquid region is given by:

ul = u∞ + uf − u∞
erfc(φ

√
ζs/ζl)

erfc( x

2
√
ζlt

) (71)

2.2.2 Analytical solution of φ

Since we have the interface evolution of the form x∗(t) = 2φ
√
ζst the proportionality constant

can be found out using the Stefan condition (69). Replacing us and ul in the equation we can
obtain

ks
∂

∂x
(u0 + uf − u0

erf(φ) erf( x

2
√
ζst

))− kl
∂

∂x
(u∞ + uf − u∞

erfc(φ
√
ζs/ζl)

erfc( x

2
√
ζlt

)) = ρsLfφ

√
ζs
t

=⇒ ks
uf − u0
erf(φ) ( 1√

πζst
exp(− x

2
√
ζst

)2) + kl
uf − u∞

erfc(φ
√
ζs/ζl)

( 1√
πζlt

exp(− x

2
√
ζlt

)2) = ρsLfφ

√
ζs
t

13



Replace x = x∗(t), kν = ζνρνcν , ρs = ρl = ρ, ζs/ζl = ζT in the above equations we obtain

cps

√
ζT
π

uf − u0
uf − u∞

e−φ
2

erf(φ) + cpl

√
1
π

e−φ
2

erfc(φ
√
ζT )

= Lfφ

√
ζT

uf − u∞

Since the Stefan number is given as, Ste = uf−u∞
Lf/cps

and β = cps(uf−u0)
cpl(uf−u∞) we can use these replace-

ments in the above equation and obtain the following form

Ste = cpl/cps
β/[
√
πφexp(φ2)erf(φ)] + 1/[

√
πζTφexp(ζTφ2)erfc(

√
ζTφ)]

(72)

2.2.3 Graphical solution of φ

This is a transcendental equation and the value of φ can only be obtained by graphical meth-
ods.For simplicity Some parameters in (72) are varied, such as β = 0.0, 0.2, 0.4, 0.6, 0.8 and
ζT = 1.0, 1.2, 1.4, after which a graph of Ste vs φ is plotted. Additionally for this example the
specific heats for the solid and liquid phase is assumed to same cps = cpl The value of φ can be

Figure 4: Stefan Number vs φ, ζT = 1.0

Figure 5: Stefan Number vs φ, ζT = 1.2
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obtained when the Stefan number is known. For instance (Section III: One dimensional freezing
of ice with constant heat flux in the water layer, Page 24, [21]) mentioned that ice has a Stefan
number of about Ste = 0.46. From the graph above we can see that this corresponds to a value
of φ about 0.65.

2.2.4 Some Contradictions

Based on the graphical methods, [4] mentioned on Page 174 "At large undercooling, the interface
velocity will be quite high (notice that φ → ∞ as Ste → 1)". The above statement however
is not fully correct. Using the given expression (72) the following plots reveal that within a
fixed range of β and ζT , Ste is possible to be calculated for only a limited window of φ.

Figure 6: Stefan Number vs φ, ζT = 2.0

Figure 7: Stefan Number vs φ, ζT = 1.0
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2.2.5 Temperature distribution profiles

Based on the above value of φ obtained in the previous section we can plot the temperature
profile as hypothesized in Fig 3

x⇤(1) x⇤(2) x⇤(3) x⇤(1) x⇤(2)

Figure 8: Temperature Distribution in Undercooled melt

The figure above explains that as the value of t increases, the interface,denoted by x∗(t), proceeds
towards right as indicated in the figure above. The top left figure describes the evolution of
temperature in solid region with the corresponding evolution interface markers, followed by the
top right which depicts temperature in the liquid regime for different intervals of time. The
bottom figure combines the two and replicates Fig 3 for different intervals.
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2.3 Example III: Interface attachment kinetics

Growth kinetics can be divided into diffusion kinetics and interface attachment kinetics (At-
tachment Kinetics on Ideal Facet Surfaces, Page 89, [22]), (Kinetic Effects in PVA, Page 9,
[23]). While the former can be used for slow interface velocities, the later must be included for
high speeds. The Stefan number is a useful metric to determine the kinetics of such problems.
We demonstrated in the previous two sections that the Ste ≤ 1. In this example we see that
Ste > 1 and extend the case of undercooling in which the solid is considered isothermal and the
velocity is considered proportional to undercooling.

2.3.1 General Framework

∂ul
∂t

= ζl
∂2ul
∂x2 x∗ ≤ x <∞ (73)

u(x∗, t) = u∗ = uf −
1
µk

dx∗

dt
x = x∗(t) (74)

ρLf
dx∗

dt
= −kl

∂ul
∂x

x = x∗(t) (75)

ul = u∞, x→∞, t = 0 (76)
x∗(0) = x∗ = 0 t = 0 (77)

In this analysis the interface velocity,v∗ is related to its undercooling ∆u given by:

v∗ = dx∗

dt
= µk∆u = µk(uf − u∗) (78)

A technique to solve this problem is by employing a dimensionless system of equations which
is given by:

θl = ul − u∞
uf − u∞

= (ul − u∞)/∆u; ξ = x

L
; ξ∗(τ) = x∗(t)

L
; τ = ζlt

L2 (79)

The modified set of dimensionless equations now transform to

∂θl
∂τ

= ∂2θl
∂ξ2 ξ∗(τ) ≤ ξ <∞ (80)

θl = θ∗ ξ = ξ∗(τ) (81)
1
Ste

dξ∗

dτ
= −∂θl

∂ξ
ξ = ξ∗(τ) (82)

θl = 0 ξ →∞, τ = 0 (83)
ξ∗ = 0 τ = 0 (84)

The interface velocity (78) can be rescaled according to the following individual transformations
(79) leading to

ζl
µkL

dζ∗

dτ
= (uf − u∞ − u∗ + u∞)uf − u∞

uf − u∞

= (1− u∗ − u∞
uf − u∞

)(uf − u∞)

= (1− θ∗)∆u

Thus the length scale which corresponds to a competition between diffusion and attachment
kinetics is given by this expression

ζl
µkL∆u

dζ∗

dτ
= 1− θ∗ L = ζl

µk∆u
(85)
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Another constraint which we have is that the velocity, v∗ must be a constant since first there
is no additional driving force that will cause it to change with time and secondly θ∗ is also a
constant.

2.3.2 Change of reference frame

At this point it is convenient to attach the frame of reference to the interface so that the
temperature field is steady in this frame owing to (78). The transformation will only be along
the x direction which can be modified as:

χ = ξ − v∗τ (86)

Using this transformation, ∂χ∂τ = −v∗, ∂
2χ
∂ζ2 = 1 which is the modified diffusion equation becomes

(−v∗)∂θl
∂χ

= ∂2θl
∂χ2 (87)

The revised boundary conditions for the changed reference variable are

ξ = ξ∗ =⇒ χ = 0; ξ →∞ =⇒ χ→∞

At this point we have two boundary conditions and an ODE in which θl depends only on χ.
Thus (87) can also be written in terms of an ODE without loss of generality. To solve this we
use the face that v∗ is a constant

∂2θl
∂χ2 + ∂v∗θl

∂χ
= 0

=⇒ ∂

∂χ
(∂θl
∂χ

+ v∗θl) = 0 =⇒ ∂θl
∂χ

+ v∗θl = 0

Given boundary conditions ξ = 0 =⇒ θl = θ∗

θl = θ∗e−v
∗χ (88)

Replacing (88) into the Stefan condition (82), the following values are obtained for θ∗ and v∗

1
Ste

dξ∗

dt

dt

dτ
= θ∗v∗ =⇒ θ∗ = 1

Ste

Using (85) and plugging in the value of θ∗ from above we have

v∗ = 1− θ∗ =⇒ v∗ = 1− 1
Ste (89)

Couple of observations follow from the above two results, most importantly, the Stefan number
cannot be less than one. If it does, θ∗ will be greater than one which is not possible since it
is normalised. Secondly v∗ cannot be negative as it will be an unphysical result in terms of
interface movement.
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2.3.3 Graphical Interpretation

We demonstrate a couple of important conclusions from the temperature variation away from
the interface using the following plot.

Figure 9: Temperature distribution in an advancing planar front

The Stefan number is varied for four different cases and the results show that

• When the Stefan number is close to 1 the interface temperature is higher and decreases
fairly linearly

• When the undercooling is higher, meaning higher Stefan number, the decrease in temper-
ature across the planar front is rapid

• The rate at which temperature drops increases as the Stefan number rises for lower starting
values of interface temperature at x = 0

• The interface temperature is most sensitive when Stefan number is between 1− 2
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3 Analytical Approach II: Perturbation Method
Perturbation theory is a branch of mathematics that deals with obtaining an approximate
solution to a problem by starting with the exact solution of a related, simpler problem. The
technique includes an intermediate phase that divides the problem into solvable and perturbative
halves. The answer is given as a power series of a tiny parameter ε which represents the
perturbation. The known solution to the solvable problem is the first phrase. At higher powers
of ε, successive terms in the series normally become smaller [24],[25]. By truncating the series
and maintaining only the first few terms, the solution to the known problem, and the first few
orders of perturbation correction, an approximate perturbation solution is obtained. [6].

3.1 Perturbation solution to the Stefan problem

Perturbation theory produces a formal power series known as a perturbation series in some
"small" parameter that quantifies the divergence from the precisely solved problem. The solution
of the absolutely solvable problem is the first term in this power series, while subsequent terms
describe the divergence in the answer caused by the deviation from the initial problem.

3.1.1 Introduction

The mathematical class of problems which involve a moving boundary are called Stefan problems
which we have seen earlier in the analysis using similarity solution. For this implementation
we root back to its original usage in freezing problem (also called solidification) of a saturated
liquid.

Figure 10: One dimensional freezing of a given region

In this problem the liquid considered is at a freezing temperature Tf after which the temper-
ature is dropped to subfreezing value T0 < Tf . Lowering of surface temperature at a location
denoted by xf which for this problem is the solidification interface causes the liquid to freeze
and proceed with an advancing front. Having said this is a highly idealised model (useful for
analysis) and incorporates the following assumptions:

• Solid and Liquid are both homogeneous and isotropic

• Phase change occurs at a discrete temperature and no interfacial/transition/mushy zone
is taken into account, essentially meaning interface thickness is zero

• Dendritic growth is not considered yet at the interface

• Conduction is the only mode of heat transfer
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3.1.2 Mathematical Framework

Temperature distribution in the solid phase is given as:

∂2T

∂x2 = 1
α

∂T

∂t
T (0, t) = T0, T (xf , t) = Tf k

∂T

∂x
|x=xf = ρL

dxf
dt

(90)

Where k, ρ, α, L are the thermal conductivity, density, thermal diffusivity of the solid phase and
latent heat of solidification respectively.

To choose a parameter for the perturbation analysis it should be small enough to serve as
the appropriate quantity. The Stefan Number is one such quantity under consideration, whose
value for some phase change like systems like ice/water have a value less than 0.5 under standard
conditions. With this we introduce the following non dimensional quantities

θ = T − Tf
T0 − Tf

τ = kt

ρcx2
s

ε = c(Tf − T0)
L

(91)

Once the above terms have been introduced, to aid in the nondimensionalisation the following
quantities have been used to transform (90) into the following equations:

∂2θ

∂x2 = ∂θ

∂τ
θ(0, τ) = 1, θ(x = xf , τ) = 0 ∂θ

∂x
|x=xf = −(1/ε)dxf

dτ
(92)

Perturbation quantity ε appears in the boundary condition of the interface in the third condition
above. Essentially this condition, also known as the Stefan condition links the transient storage
term ∂θ

∂τ with the transient motion term dxf
dτ . Here motion refers to that of the solid liquid

interface. Rewriting (92) the following relations can be written

∂θ

∂τ
= ∂θ

∂xf

∂xf
∂τ

∂θ

∂x
|x=xf = −(1/ε)∂xf

∂τ

=⇒ ∂θ

∂τ
= ∂θ

∂xf
(−ε ∂θ

∂x
)|x=xf

=⇒ ∂2θ

∂x2 = −ε ∂θ
∂xf

(∂θ
∂x

)|x=xf

3.1.3 Perturbation Analysis

Now we can derive a perturbation solution by assuming an asymptotic series solution of the
form

θ =
∞∑
n=0

θnε
n (93)

For ease in analysis we use the first three terms such that

θ = θ0 + εθ1 + ε2θ2 (94)

Using (94) in the above equations the following modification is made

∂2θ0
∂x2 + ε

∂2θ1
∂x2 + ε2

∂2θ2
∂x2 = −ε[ ∂θ0

∂xf
+ ε

∂θ1
∂xf

+ ε2
∂θ2
∂xf

][∂θ0
∂x
|x=xf + ε

∂θ1
∂x
|x=xf + ε2

∂θ2
∂x
|x=xf ]

(95)

Using the boundary conditions:

θ0(x = 0, xf ) + εθ1(x = 0, xf ) + ε2θ2(x = 0, xf ) = 1
θ0(x = xf , xf ) + εθ1(x = xf , xf ) + ε2θ2(x = xf , xf ) = 1
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Once this is obtained the coefficients of like powers are equated and we obtain

Zeroth Order(ε0) ∂2θ0
∂x2 = 0 θ0(x = 0, xf ) = 1, θ0(x = xf , xf ) = 0

(96)

First Order(ε1) ∂2θ1
∂x2 = − ∂θ0

∂xf

∂θ0
∂x
|x=xf θ0(x = 0, xf ) = 0, θ0(x = xf , xf ) = 0

(97)

Second Order(ε2) ∂2θ1
∂x2 = −[ ∂θ0

∂xf

∂θ1
∂x
|x=xf + ∂θ1

∂xf

∂θ0
∂x
|x=xf ] θ0(x = 0, xf ) = 0, θ0(x = xf , xf ) = 0

(98)

Historically the zeroth order problem was used by Stefan and physically represents a quasi-
steady approximation to the problem. The above equations are solved for calculating the
coefficients. The implementation from (96) goes as follows

∂θ0
∂x

= C =⇒ θ0 = Cx+D =⇒ (BC for θ0) =⇒ θ0 = 1− x

xf

Using the above expression of θ0 in the higher order expressions

∂2θ1
∂x2 = − ∂θ0

∂xf

∂θ0
∂x
|x=xf = x

x3
f

Integrating ∂θ1
∂x

= x2

2x3
f

+ C1 =⇒ θ1 = x3

6x3
f

− x

6xf

The expression of θ2 can be obtained based on the values of θ1, θ2 as follows

∂2θ2
∂x2 = −[16( x

x3
f

) + 1
2(x

3

x5
f

)] =⇒ θ2 = 1
360( x

xf
)[19− 10( x

xf
)2 − 9( x

xf
)4]

Using the three perturbation terms i.e. θ = θ0 + εθ1 + ε2θ2

θ = (1− x

xf
)− 1

6ε(
x

xf
)(1− ( x

xf
)2) + 1

360ε
2( x
xf

)(19− 10( x
xf

)2 − 9( x
xf

)4) (99)

Once an expression for θ is obtained the Stefan condition is applied and the following expression
is obtained

dxf
dτ

= −ε ∂θ
∂x
|x=xf

= 1
xf

(ε− 1
3ε

2 + 7
45ε

3) +O(ε4)

The final expression for the interface position xf in terms of the normalised time is given as

x2
f = (ε− 1

3ε
2 + 7

45ε
3)2τ (100)

In terms of τ : (mainly used for plotting)

τ =
x2
f

2 (ε− 1
3ε

2 + 7
45ε

3)−1
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3.1.4 Validation against Similarity solution

In order to validate the results obtained using perturbation analysis, we use the similarity
solution approach, discussed in Section II. The problem considered is rewritten as follows (92):

∂2θ

∂x2 = ∂θ

∂τ
θ(0, τ) = 1, θ(x = xf , τ) = 0 ∂θ

∂x
|x=xf = −(1/ε)dxf

dτ

Using similarity technique we have seen a familiar result for θ

θ = 1− erf(λx/xf )
erfλ λ = xf/2

√
τ (101)

where λ is the root of the transcendental equation.
√
πλeλ

2erfλ = ε (102)

One interesting thing to note is that the perturbation solution reproduces exact results for
small values of λ.

In order to do this, a binomial expansion is performed for (102)

eλ
2 = 1 + λ2 + λ4

2 + λ4

2 + λ6

6 + . . .

erfλ = 2√
π

(λ− λ3

3 + λ5

10 −
λ7

42 + . . . )

Substituting above into (102) the following expression for λ is obtained

2λ2 + 4
3λ

4 + 8
15λ

6 + 16
105λ

8 + · · · = ε

To obtain a solution for the above λ2 can be written in terms of a series expansion and reversed,
given as λ2 =

∑∞
n=1 bnε

n.
This gives a general expression for λ2 in terms of ε

λ2 = 1
2ε−

1
6ε

2 + 7
90ε

3 =
x2
f

4τ (103)

x2
f = 2τ(ε− 1

3ε
2 + 7

45ε
3) (104)

3.1.5 Conclusion

In the end we see that the solution for the analytical and perturbation analysis is very similar
for small approximation of Stefan Number. We plot some results for ε values of 0.2, 0.4, 0.6, 0.8.
From the figure we can comment on a number of things.

• First of all, as the Stefan number increases it takes less time for a certain fixed amount
of solidification to take place.

• The difference in solidification curves is more smaller values of Stefan number than for
larger values.

• The speed of the interface can be determined from this plot which gives a quantitative
understanding about the moving boundary.

• The similarity solution (Section II) gives fairly similar results to the perturbation tech-
nique. In order to compare some of these results we use other methods as discussed in
the subsequent sections.
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Figure 11: Solidification Thickness vs Dimensionless Time for variable Stefan No. ε
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4 Analytical Approach III: Multiple Variables Expansion (MVE)
Method

Multiple-scale analysis (also known as the method of multiple scales) is a set of techniques
used in mathematics and physics to develop consistently valid approximations to the solutions
of perturbation problems, for both small and large values of the independent variables. This
is accomplished by establishing fast-scale and slow-scale variables for an independent variable,
and then treating the fast and slow variables as if they were independent. The ensuing addi-
tional flexibility – introduced by the new independent variables – is then employed to remove
(unwanted) secular elements during the perturbation problem solution process.

4.1 Solidification with Planar Interface from a Pure Melt

4.1.1 Introduction to Mullins Sekerka Instability

The mathematical analysis of Mullins and Sekerka [26] is aimed at understanding the mor-
phology of the interface; as they themselves explain: The purpose of this paper is to study the
stability of the shape of a phase boundary enclosing a particle whose growth during a phase
transformation is regulated by the diffusion of the material or the flow of heat. . . . The ques-
tion of stability is studied by introducing a perturbation in the original shape and determining
whether this perturbation will grow or decay.

In a second seminal paper [27] where they present a rigorous proof for stability of these
interfaces they quote: The purpose of this paper is to develop a rigorous theory of the stability
of the planar interface by calculating the time dependence of the amplitude of a sinusoidal
perturbation of infinitesimal initial amplitude introduced into the shape of the plane; . . . the
interface is unstable if any sinusoidal wave grows and is stable if none grow. With that being the
primary motivation in this analysis instability of a planar interface in unidirectional solidification
is analysed. The problem considers an originally flat solidifying front advancing into a purely
undercooled melt with velocity v.

4.1.2 Basic Framework

A system of moving two dimensional Cartesian coordinate system with the x axis fixed to
the interface is considered. The y axis is aligned along the growth direction of the interface.
Additionally it is also assumed that mass density ρ, thermal diffusivity constant κT , specific
heat per unit volume cρ are same for both liquid and solid phases. The physical properties are
made dimensionless with the governing form expressed as:

λαT (∂T̄
∂t̄

+ ū · ∇T̄ ) = ∇2T̄ (105)

This is the heat conduction equation with the following coordinate transformation in the moving
frame. Additionally ∆H/(cpρ) has the scale of temperature and will be used here

lD = κD/V X̄ = X/lD t̄ = tV/lD ū = u/V T̄ = T − TMO

∆H/(cpρ) (106)

where TMO refers to melting temperature at the interface. With this we begin the analysis with
some boundary conditions. The system under consideration has the form reduced from (105)
under the constraints −|u| = −1, λ = 1, αT = 1

∇2T̄ = ∂T̄

∂t̄
− ∂T̄

∂ȳ
(107)

T̄ → T∞ = T∞ − TMO

∆H/(cpρ) (108)
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The conditions at the interface ȳ = h̄(x̄, t̄) are

• Thermodynamic equilibrium condition T̄ = T̄S

• the Gibbs-Thompson condition: T̄S = γ h̄x̄x̄
(1+h̄2

x̂)3/2

• Enthalpy balance equation: ∂
∂ȳ (T̄ − T̄s)− h̄x̄ ∂

∂x̄(T̄ − T̄s) + h̄t + 1

We will skip the bar notation for simplicity in analysis. This one dimensional steady state
solution with a flat interface can be obtained by setting the x and t partial derivatives equal to
zero. From this we obtain:

TB = e−y − 1 (liquid) TB = 0 (solid) (109)

where TB is the basic state solution for temperature. From the expression of liquid temperature
it is seen as y →∞ TB(∞) = −1. Hence the steady state solution is applied only for the general
case when T∞ = −1. So the question is what happens when this value is not equal to -1. [28]
refers to a situation when 0 > TB > −1 and describes the shape of the interface being curved.
For cases TB < −1 the system has no solution and it loses thermodynamic equilibrium.

4.1.3 Unsteady Perturbed Solution

To study the pertubation solution for the above problem one chooses primary variables from
the steady state solution [28]. These are expressed in the form

T (x, y, t) = TB(y) + T̃ (x, y, t)
TS(x, y, t) = TSB(y) + T̃S(x, y, t)

h(x, t) = hB + h̃(x, t)

where T̃ , T̃S , h̃ are small perturbations around the steady state.
Accordingly the governing equation for the perturbation is given as

∇2T̃ = ∂T̃

∂t
− ∂T̃

∂y
(110)

The boundary conditions are as follows:

• As y →∞, T̃ → 0

• h̃ is very small and the original equations are linearised by expanding them in a Taylor
series around hB = 0

The linear interface conditions ar y = 0 are written as:

T̃ = T̃S − (∆G1)h̃ (111)
T̃S = Γ ˜hxx −G1S h̃ (112)

∂(T̃ − T̃S)
∂y

+ (∆G2)h̃+ ∂h̃

∂t̃
= 0 (113)

where the G terms imply derivatives given as

G1L = ∂TB
∂t̃

(0) = −1 ∂TBS
∂y

(0) = 0 (114)

∆G1 = (G1L −G1S) = −1 (115)

∆G2 = ∂2TB
∂y2 |y=0 −

∂2TSB
∂y2 |y=0 = 1 (116)
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Here one additional parameter Γ is introduced which in practice is a small quantity and ap-
pears in front of double derivatives. The solution that is sought for in this problem is that of
asymptotic expansion solution. In the limiting process when Γ → 0 the perturbed quantities
have similar order of magnitude which leads to the following relation

ε =
√

Γ (117)

The parameter ε plays a crucial role in the stability of the interface and is hence known as
the interface stability parameter. The solution sought is predicted to have a nature of multiple
length scales [29] and hence attempted to solve using the Multiple Variables Expansion
method.

In this process one introduces a set of fast variables such that the following relations hold

x+ = k(ε)x
ε

y+ = g(ε)y
ε

t+ = σ(ε)t
ε

(118)

Now, the total set of independent variables can be written as (x+, y+, t+, x, y, ε). So now as
the interface stability parameter ε → 0 the perturbation solution q̃ = T̃ , T̃S , h̃ is expanded as
follows

q̃(x+, y+, t+, x, y, ε) ∼ et+(q̃0(x+, y+, x, y) + εq̃1(x+, y+, x, y) + . . . )
k(ε) ∼ k0 + εk1 + . . .

g(ε) ∼ k0 + εg1 + . . .

gs(ε) ∼ k0 + εgs1 + . . .

σ(ε) ∼ σ0 + εσ1 + . . .

Notice here that the leading terms of the expansion for k(ε), g(ε), gs(ε) are set as the same,
where k, g, gs are wave numbers. Using the relations above into (110),(111),(112),(113) and
using the following transformation

∂

∂x
=⇒ ∂

∂x
+ k

ε

∂

∂x+
∂

∂y
=⇒ ∂

∂y
+ g

ε

∂

∂y+
∂

∂t
=⇒ σ

ε

∂

∂t+

∂2

∂x2 =⇒ ∂2

∂x2 + 2k
ε

∂2

∂x∂x+
+ k2

ε2
∂2

∂x2
+

The multiple variable form of the final system is thus obtained as:

k2 ∂
2T̃

∂x2
+

+ g2∂
2T̃

∂y2
+

= ε(σT̃ − g ∂T̃
∂t+
− 2k ∂2T̃

∂x∂x+
− 2g ∂2T̃

∂y∂y+
)− ε2( ∂

2

∂x2 + ∂2

∂y2 + ∂

∂y
)T̃ (119)

k2∂
2T̃S
∂x2

+
+ g2∂

2T̃S
∂y2

+
= ε(σT̃S − g

∂T̃S
∂t+
− 2k ∂2T̃S

∂x∂x+
− 2g ∂

2T̃S
∂y∂y+

)− ε2( ∂
2

∂x2 + ∂2

∂y2 + ∂

∂y
)T̃S (120)

Obeying the boundary conditions:

T̃ → 0 (y+ →∞) T̃S → 0 (y+ → −∞)
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At the interface the boundary conditions play a crucial role in governing stability. The corre-
sponding equations are:

T̃ = T̃S − (∆G1)h̃ (121)

T̃S = k2 ∂
2h̃

∂x2
+

+ 2εk ∂2h̃

∂x+∂x
+ ε2

∂2h̃

∂x2 −G1S h̃ (122)

g
∂T̃

∂y+
− gs

∂T̃S
∂y+

+ ε
∂

∂y
(T̃ − T̃S) + σh̃+ ε(∇G2)h̃ = 0 (123)

As we can see that this closely resembles a system of linear equations, however the linearity
comes about in derivatives which needs to be linearised through substitutions.

4.1.4 Zeroth Order Approximation solution

Assuming ε� |k0| = O(1), the zeroth order or leading order approximation can be obtained as

k2
0( ∂

2

∂y2
+

+ ∂2

∂x2
+

)T̃0 = 0 (124)

The boundary conditions take the form:

T̃0 → 0 (y+ →∞) ˜TS0 → 0 (y+ → −∞) (125)

At the interface the zeroth order terms are:

T̃0 = ˜TS0 − (∆G1)h̃0 (126)

˜TS0 = k2
0
∂2h̃0
∂x2

+
−G1S h̃0 (127)

k0
∂T̃0
∂y+

− k0
∂ ˜TS0
∂y+

+ σ0h̃0 = 0 (128)

The zeroth order approximation of the primary variables T̃0, ˜TS0, h̃0 admit mode solutions (es-
sentially exponential solutions so that the system of equations can be linearised).

T̃0 = A0(x, y)eix+−y+ ˜TS0 = AS0(x, y)eix++y+ h̃0 = D̂0e
ix+ (129)

One can replace the exponents A0, ASO. based on their initial conditions

Â0 = A0(x, 0) ÂS0 = AS0(x, 0) (130)

Replacing above into (126),(127),(128) we obtain the following

Â0 = ÂS0 −∆G1D̂0 (131)
ÂS0 = −k2

0D̂0 −G1SD̂0 (132)
−k0(Â0 + ÂS0) + σ0D̂0 (133)

The linear system of equation just obtained can be solved for a non trivial solution if the
determinant of the coefficient matrix is zero. Reframing the coefficient matrix for the above
case we have:

M =

 1 −1 ∆G1
0 1 k2

0 +G1S
−k0 −k0 σ0


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Calculating the determinant of matrix M and using (115) the following relation is obtained

σ0 = k0(1− 2k2
0) (134)

The above expression is more popularly known as the dispersion relationship. Given the eigen-
value σ0, the corresponding wavenumber k0 can be determined.

We also see here that σ0 must be real. There are few regions to be considered

• When 0 < σ < 1
3

√
2
3 , the values of k are k1

0 > 0, k2
0 < 0, k3

0 > 0. Negative wavenumber
gives unfeasible solution and hence the general solution of the perturbed system is

h̄ = Re(D1
0e
ik1

0x +D3
0e
ik3

0x)e
σ0
ε
t

These solutions are growing unstable modes. In the special case when σ = 0, k3
0 = 0, k1

0 > 0
and corresponding solutions are neutrally stable.

• When σ < 0 the local dispersion relationship yields one real root k1
0 and one decaying

mode

• When σ > 1
3

√
2
3 the dispersion relationship gives no real root and system has no corre-

sponding mode

Once the fast variable calculations are utilised for the analysis, it is transferred back into the
slow variables using the following equations

T̃0e
σ0t+ = A0e

k̃0(ix−y)+σ̃0t (135)
˜TS0e

σ0t+ = AS0e
k̃0(ix+y)+σ̃0t (136)

h̃0e
σ0t+ = D0e

k̃0(ix)+σ̃0t (137)

The dispersion relationship obtained from the non trivial determinant condition is written as:

σ0 = k0(−(G1L +G1S)− 2k2
0) =⇒ σ̃0 = k̃0(−(G1L +G1S)− 2ε2k̃0

2) (138)

We observe here that G is the temperature gradient. The term (G1L + G1S)/2 can be viewed
as a mean temperature gradient and is condensed as Ḡ1. Expanding the above equation based
on these terms

σ̃0 = −2Ḡ1k̃0 − 2ε2k̃0
3 (139)

The above equation (139) is the most fundamental expression to be considered for further
analysis. The first term is an unstable factor which is responsible for heat conduction. The
second term, known as surface tension, is a stable term but is relevant only when ε is large
which means for larger length/time scales. These are also called secular terms.

For this problem however the surface tension term is eliminated and (139) reduces to

σ̃0 = −2Ḡ1k̃0 (140)

4.1.5 Analysis of Dispersion Relationship

Since Ḡ1 is always negative according to the problem (negative mean temperature gradient),
one obtains σ̃ > 0 for k̃0 > 0. Hence this implies that the system will always be unstable.

However one way in which the system can be stable is when the surface tension parameter in
(139) is activated and the negative term starts to kick in. However these are short wavelength
perturbations and are often dominated by the long wavelength ones which grow in time. Some
discussion follows
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• For k̃0 >
√
Ḡ1/ε, σ̃ which means the mode solutions are decaying and stable

• For 0 < k̃0 <
√
Ḡ1/ε the mode solutions are growing and unstable.

• For k̃0 =
√
Ḡ1/ε these are neutral modes with no activity

From this it can be concluded that during solidification every perturbed state is either purely
growing or decaying owing to Mullins-Sekerka instability. Further when the mean temperature
gradient is positive the system is stable for all positive values of k̃0 as σ̃ < 0. Physically
this means that when the interface moves to a high temperature liquid region the interface
will always be smooth. For further analysis however higher order approximations need to be
considered specifically for higher length and time scales, i.e when ε is taken into account.
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5 Analytical Approach IV: Polynomial and Exponential Ap-
proximation

5.1 Ice Solidification in a finite domain

The phase change problem of solidification of water in a flat rectangular container, which is a
one-dimensional Stephan problem with a moving boundary, is considered. The solution includes
determining the moving interface. Stephan problems are parabolic, partial differential heat
equations with proper boundary conditions on the moving boundary that are initial boundary
value problems. Because of their widespread occurrence in energy conservation units, industrial,
refrigeration, crystal growth, geophysical science, welding, and casting, heat transfer problems
linked with melting and solidification they have acquired a lot of attention in the last decade.
The solidification of pure water in a rectangular capsule is investigated in this study. A constant
temperature boundary condition is applied to the enclosure. Conduction is assumed to be the
only mode of heat transfer during the solidification process to simplify tracking the interface.

5.1.1 Introduction

The present section discusses an analytical method to evaluate temperature distributions in
solid and liquid phase for ice solidification. The process involves considering a polynomial and
exponential initial assumption to solve the governing PDE [28]. Finally the results are vali-
dated against standard results. The following assumptions are made about the one dimensional
problem

• The thermal and physical properties are considered to be constant

• Conduction is the only mode of heat transfer in the medium

• Solid liquid interface boundary moves at a constant rate

• Water temperature in domain is initially at freezing temperature

5.1.2 Mathematical Framework

The solid domain is represented in the domain from 0 < x < y(t) and that of liquid as y(t) <
x < h. Ts and Tl are temperatures of solid and liquid respectively. Interface is denoted by y(t)
and a boundary temperature of Tb is imposed. The governing equations for these domains are
as follows:

ks
∂2Ts
∂x2 = ρscs

∂Ts
∂t

kl
∂2Tl
∂x2 = ρlcl

∂Tl
∂t

(141)

Boundary conditions are given as:

Ts = Tb (x = 0) ∂Tl
∂x

= 0 (x = h) (142)

The initial and interface condition is given as

Tl(x, 0) = Tm Ts = Tl = Tm ρsHs
∂y

∂t
= ks

∂Ts
∂x
− kl

∂Tl
∂x

(x = y) (143)

The following non dimensional quantities are introduced as follows:

θ = T − Tb
Tm − Tb

X = x

h
S = y

h
τ = kst

ρscsh2 ε = cs(Tm − Tb)
Hs

(144)
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Substituting (144) into (141),(142),(143) we obtain the following dimensionless relations
∂2θs
∂X2 = ∂θs

∂τ
0 ≤ X < S

∂2θl
∂X2 = αs

αl

∂θl
∂τ

S < X ≤ 1 (145)

The modified boundary conditions based on the dimensionless transformation changes to

θs = 0 (X = 0) ∂θl
∂X

= 0 (X = 1) (146)

Finally the initial and interface conditions changes as:

θl = 1 θs = θl = 1 1
ε

∂S

∂τ
= ∂θs
∂X
− kl
ks

∂θl
∂X

(X = S) (147)

The primary dimensionless equation (145) is then integrated and constraints (146), (147) applied
to obtain the following ∫ S

0

∂θs
∂τ

dX =
∫ S

0

∂2θs
∂X2dX = ∂θs

∂X
|S −

∂θs
∂X
|0 (148)∫ 1

S

αs
αl

∂θl
∂τ

dX =
∫ 1

S

∂2θl
∂X2dX = ∂θl

∂X
|1 −

∂θl
∂X
|S (149)

Using (148) into (147) we obtain the following
1
ε

∂S

∂τ
=
∫ S

0

∂θs
∂τ

dX + ∂θs
∂X
|0 + ρlcl

ρscs

∫ 1

S

∂θl
∂τ

dX (150)

Using chain rule ∂θ
∂τ = ∂θl

∂S
∂S
∂τ , (150) modifies as

1
ε

∂S

∂τ
= (
∫ S

0

∂θs
∂S

dX + ρlcl
ρscs

∫ 1

S

∂θl
∂S

dX)∂S
∂τ

+ ∂θs
∂X
|0

=⇒ ∂S

∂τ
(1
ε
− (
∫ S

0

∂θs
∂S

dX − ρlcl
ρscs

∫ 1

S

∂θl
∂S

dX)) = ∂θs
∂X
|0

Now that an equation in θs is obtained we use approximations to evaluate the result. As a
starting case one uses a linear approximation θs = a to obtain interface velocity as

∂S

∂τ
= 2ε

2 + ε

1
S

(151)

5.1.3 Quadratic Approximation

The temperature of the solid region can be assumed to have a quadratic form and expressed as

θS = c+ dX + eX2 (152)

Applying (146) to the above one obtains

dS + eS2 = 1 1
ε

∂S

∂τ
= d+ 2eS =⇒ dS + 2eS2 = 2

2 + ε
(153)

Thus d, e becomes:

d = 2(1 + ε)
S(2 + ε) e = − ε

2 + ε

1
S2

The expression for solid state temperature is given by

θS = 2(1 + ε)
(2 + ε)

X

S
− ε

2 + ε

X2

S2 (154)

In order to obtain the interface velocity at this instant we need to calculate ∂θS
∂X ,

∂θS
∂S which gives

the interface velocity as:

∂S

∂τ
= 6ε+ 6ε2

6 + 6ε+ ε2
1
S

=⇒ S = 1
2

√
( 12ε+ 12ε2
6 + 6ε+ ε2

)τ (155)
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5.1.4 Cubic Approximation

As an extension to the earlier model the temperature distribution in the solid region can be
approximated by a cubic polynomial given as follows [30]

θS = a+ bX + cX3 (156)

Using similar boundary conditions as given in (146), one obtains two equations for evaluating
the constants namely

bS + cS3 = 1 bS + 3cS3 = 2
2 + ε

=⇒ b = 4 + 3ε
2S(2 + ε) , c = − ε

2(2 + ε)S3 (157)

Substituting back into (156)

θS = 4 + 3ε
2(2 + ε)

X

S
− ε

2(2 + ε)
X3

S3 (158)

Similar to the previous section in order to obtain interface velocity we need to calculate ∂θS
∂X ,

∂θS
∂S

which gives the value as:

∂S

∂τ
= 4ε

4 + ε

1
S

=⇒ S =
√

8ετ
4 + ε

(159)

5.1.5 Exponential Approximation

While choosing the exponential approximation it can be seen that this ensures an infinite poly-
nomial approximation as compared to the quadratic or cubic ones. The temperature distribution
in the solid region is approximated by an exponential function given as

θs = a+ e−bX (160)

Using boundary conditions as in (146), the constants transform to

a = −1, b = −1
(2 + ε)S =⇒ θS = −1 + e

X
(2+ε)S (161)

The following expressions are evaluated

∂θs
∂X
|0 = 1

S(2 + ε)
∂θs
∂S

= e
X

(2+ε)S
−1

(2 + ε)
X

S2 (162)

which is used to obtain ∫ S

0

∂θs
∂S

dX = e
1

(2+ε) (1 + ε)− (2 + ε) (163)

from which the interface velocity is easily obtained as:

∂S

∂τ
= ε

(2 + ε)(1 + ε)((1 + ε− εe
1

(2+ε) ))

1
S

(164)

The final expression of S is obtained as

S = 1
2

√√√√ 2ετ

(2 + ε)(1 + ε)((1 + ε− εe
1

(2+ε) ))
(165)
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5.1.6 Results and Discussion

From the plots we can see that at a fixed Stefan number the results for Quadratic, Cubic and
Exponential are fairly similar. However to verify the results we have used some results from
Perturbation Analysis (Section III).

The results show that Cubic analysis gives fairly accurate results with perturbation analysis.
This also reflects on the kind of approximation that can be used for a wide range of Stefan values.
The error plot of results obtained for a cubic polynomial substitution and perturbative analysis
is shown as solidification distance against error which explains the difference. A key observation
is that as the Stefan number increases all models correctly predict the increased velocity of the
interface as evident from the plots. Finally, during the analysis one necessarily needs to
choose a linear term while choosing the initial approximation expression. As an exercise one
can attempt an analysis without the linear term and validate this statement.

Figure 12: Solidification Distance vs Dimensionless Time for varying Stefan Number (ε) and
Error Plot for Cubic and Exponential vs Perturbation Analysis
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6 Numerical Approach I: Finite Difference Method

6.1 Analysis of Stefan Problem using Finite Difference Method

Finite-difference methods (FDM) are a class of numerical techniques used to solve differential
equations by approximating derivatives using finite differences in numerical analysis. The value
of the solution at these discrete places is approximated by solving algebraic equations including
finite differences and values from neighboring points, and both the spatial domain and time
interval (if relevant) are discretized, or broken into a finite number of steps.

Ordinary differential equations (ODE) or partial differential equations (PDE), which may
be nonlinear, are converted into a system of linear equations that may be solved using matrix
algebra techniques using finite difference methods. The extensive usage of FDM in modern
numerical analysis is due to the efficiency with which modern computers can do these linear
algebra computations, as well as the relative ease with which they can be implemented. Along
with finite element methods, FDMs are one of the most common approaches to the numerical
solution of PDEs nowadays.

6.1.1 Introduction

The motivation is driven from the fact that many physical problems involve initial boundary
value problems for parabolic differential equations in which part of the boundary is not given a
priori but is found as part of the solution. Here we approximate the appearing derivatives of the
governing PDE by sums and differences of function values [31]. Two time-stepping schemes used
in finite difference for this problem: Forward Euler and Crank Nicholson [32]. These methods
have been discussed in detail and finally implemented.

6.1.2 Forward Euler Method

This method is used for approximating solutions and it is explicit as it can be expressed as the
solution at time n+ 1 based on the former step n. To demonstrate and set the framework, the
one dimensional heat equation is considered

ut = uxx x ∈ (0, 1), t ∈ (0,∞) (166)
u(x, 0) = v(x) u(0, t) = u(1, t) = 0 (167)

The numerical solution can be written as unj of u as Unj ≈ u(jh, nk), where j = 0, 1, 2, . . . ,M, n =
0, 1, 2, . . . ,M and h = 1/M,M being the number of nodes in the discretisation and k being the
time step. The derivatives are introduced as:

∂xU
n
j =

Unj+1 − Unj
h

∂̄xU
n
j =

Unj − Unj−1
h

(168)

Using this discretisation, (166) can be written as

∂tU
n
j = ∂x∂̄xU

n
j Un0 = UnM = 0 U0

j = v(xj) (169)

Replacing some constants in the problem we take λ = k/h2 and rewrite the problem in the
following form

Un+1
j = λ(Unj−1 + Unj+1) + (1− 2λ)Unj (170)

Un+1
0 = Un+1

M = 0 (171)
U0
j = v(xj) (172)

The final form can be expressed in terms of a matrix and that is written as:

Ūn+1 = AŪn (173)
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where the matrix A is the following

A =



1− 2λ λ 0 . . . 0
λ 1− 2λ λ . . . 0

0 . . . . . . . . . 0
... . . . λ 1− 2λ λ
0 . . . 0 λ 1− 2λ


As we can see from above the matrix A is a symmetric tridiagonal coefficient matrix.

This method however is only first order accurate in time and second order in space as
seen from the above. Hence the error in time dominates unless it is kept too small. Generally
speaking the Forward Euler scheme presented above is stable only when the mesh ratio, λ ≤ 1/2.
This observation is also evident by seeing the diagonal terms in the matrix above and setting
the condition that aii ≥ 0

6.1.3 Crank Nicholson Scheme

Another finite difference scheme which is a semi implicit one and uses symmetry around a
middle point with respect to time xj , tn+1/2

tn+1/2 = tn+1 + tn

k

where k is the time step. Due to the implicit scheme an algebraic system must be solved for in
each time step. The same set of equations previously solved by the Forward Euler method can
be written as:

∂̄tU
n+1
j = 1

2∂x∂̄x(Unj + Un+1
j ) j = 1, 2, . . . ,M − 1 (174)

Un0 = UnM = 0 U0
j = v(xj) j = 0, 1, . . . ,M (175)

Arranging the equation in terms of spatial step n+ 1 with n it can be written as

(I − 1
2k∂x∂̄x)Un+1

j = (I + 1
2k∂x∂̄x)Unj (176)

where I is theM−1 identity matrix and then using finite difference coefficients to enable writing
in the matrix form

(1 + λ)Un+1
j − 1

2λ(Un+1
j−1 − U

n+1
j+1 ) = (1− λ)Unj + 1

2λ(Unj−1 − Unj+1) (177)

The matrix is of the form BŪn+1 = AŪn where B can be written as

B =



1 + λ −(1/2)λ 0 . . . 0
−(1/2)λ 1 + λ −(1/2)λ . . . 0

0 . . . . . . . . . 0
... . . . −(1/2)λ 1 + λ −(1/2)λ
0 . . . 0 −(1/2)λ 1 + λ


and A can be written as

A =



1− λ (1/2)λ 0 . . . 0
(1/2)λ 1− λ (1/2)λ . . . 0

0 . . . . . . . . . 0
... . . . (1/2)λ 1− λ (1/2)λ
0 . . . 0 (1/2)λ 1− λ


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Since it is a matrix formulation, the resulting solution of field variable can be written as

Ūn+1 = B−1AŪn (178)

We can see that this problem is second order accurate in time and it no longer enforces restric-
tions in time step selection.

6.1.4 Transit to the Stefan problem

We introduce some variable transformation in this case owing to the fact that when t→ 0 the
system turns degenerate.

ξ = x

s(t) u = h(t)F (ξ, t) (179)

The PDE transforms as

∂u

∂x
= ∂2u

∂x2 → h
∂2F

∂ξ2 = s[sdh
dt
F + sh

∂F

∂t
− ξ ds

dt

∂F

∂ξ
] (180)

For a simple case we assume a non time dependant or constant boundary conditions. How this
influences the variables governing the Stefan problem is written as follows.

Let β = lρ
K be a material parameter and the constant boundary conditions imposed on (180)

can be written as

F = 0 ξ = 1 (181)

F = 1
h(t) ξ = 0 (182)

βs(t)ds
dt

= −h∂F
∂ξ

ξ = 1 (183)

The second condition needs some study. The function h(t) must be chosen in such a way that F
is independent of time when it tends to 0. The only way that is possible is to choose h(t) = 1.
The interface evolution equation as obtained from the similarity solution given as s = 2Λ

√
αt

can be modified with α = 1 changing (180) as:

∂2F

∂ξ2 = −2Λ2ξ
∂F

∂ξ
F (1) = 0, F (0) = 1,−∂F

∂ξ
|ξ=1 = 2Λ2β (184)

The final solution is given as

F (ξ) = 1− erf(Λξ)
erf(Λ) (185)

which satisfies our requirement that F (ξ, t) does not depend on time for the given boundary
conditions where Λ has been solved previously in Similarity solution process (Chapter II) and
Perturbation analysis (Chapter III).

6.1.5 Numerical solution of Stefan Problem

Given a sufficient background using the numerical scheme discussed so far and boundary condi-
tions applicable for a simplified moving boundary problem the following analysis is performed.

Using (181),(182),(183) and replacing z = s2, (180) transforms as

∂2F

∂ξ2 = z
∂F

∂t
− ξ

2
dz

dt

∂F

∂t
z(0) = 0 (186)
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The discretisation of the modified problem is carried out using Crank Nicholson scheme which,
as discussed, uses a central difference method at time tn+1/2 and a second order derivative at ξj

(1/2)
Fn+1
j+1 − 2Fn+1

j + Fn+1
j−1

h2 +
Fnj+1 − 2Fnj + Fnj−1

h2 =

zn+1/2F
n+1
j − Fnj

k
− ξj

2
zn+1 − zn

k
((1/2)

Fn+1
j+1 − F

n+1
j−1

2h + (1/2)
Fnj+1 − Fnj−1

2h )

The boundary conditions transform as:

β

2 (z
n+1 − zn

k
) = −1

2(
Fn+1
M+1 − F

n+1
M−1

2h )− 1
2(
FnM+1 − FnM−1

2h ) Fn+1
0 = 1, Fn+1

M = 0 (187)

Writing the above in matrix form

L̃ = (1/2)
Fn+1
j+1 − 2Fn+1

j + Fn+1
j−1

h2 − zn+1/2

k
Fn+1
j + z′

8hξj(F
n+1
j+1 − F

n+1
j−1 ) (188)

R̃ = (−1/2)
Fnj+1 − 2Fnj + Fnj−1

h2 − zn+1/2

k
Fnj + z′

8hξj(F
n
j+1 − Fnj−1) (189)

This ensured that the left hand side of the equation is structured for n + 1 step and the right
side that of nth step. Some of the notations above are follows:

z′ = zn+1 − zn

k
zn+1/2 = zn+1 + zn

2 (190)

Including the boundary conditions given in (187) the first step j = 1 a constant vector is formed
given as

C =


1
h2 − z′

8hξ1
0
...
0


Equation (188) can be expanded into a matrix form by assigning

A =
Fn+1
j+1 − 2Fn+1

j + Fn+1
j−1

h2 B = zn+1/2

k
Fn+1
j + z′

8hξj(F
n+1
j+1 − F

n+1
j−1 )

A,B is written as

A = 1
2h2



−2 1 0 . . . 0

1 −2 1 . . . ...

0 . . . . . . . . . 0
... . . . 1 −2 1
0 . . . 0 1 −2



B = 1
8h



0 ξ 0 . . . . . . 0

ξ2 0 ξ2
. . . . . . ...

0 −ξ3 0 ξ3 . . . 0

0 . . . . . . . . . . . . 0
... . . . . . . −ξM−2 0 ξM−2
0 . . . . . . 0 −ξM−1 0


These are examples of tridiagonal matrices. The matrix form can be modified and written as

(A− zn+1/2

k
I − z′B)Fn+1 = (−z

n+1/2

k
I − z′B −A)Fn − 2C (191)
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The above equation can be written as:

LFn+1 = RFn − 2C (192)

where L and R are the left and right coefficient matrices of (191). In the end including (187)
the final form for evaluating z is a second order polynomial equation and expressed as follows

βξM
2k (zn+1)2 + (−βξM

k
zn + 2βr

v
+ Fn+1

M − FnM )zn+1+

βξM
2k (zn)2 − 2βr

v
zn + (2r + zn)FnM − 2r(Fn+1

M−1 + FnM−1) = 0

6.1.6 Results

As we can observe the numerical results agree accurately with the analytical results for small
values of Stefan number. The time step tn is chosen and z is solved which is replaced with
z = s2. Interface movement or solidification distance s obtained from the previous step is
plotted against time.

Figure 13: Numerical vs Analytical solution for Time (tn) against solidification distance (s)
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7 Summary
In conclusion we have presented a couple of robust frameworks for solving the one dimensional
Stefan problem and observed a number of its quantitative and qualitative aspects. Here is a
brief summary of the methods discussed:

• The similarity solution is a fundamental technique for evaluating temperature distributions
across a moving boundary. It also gives a transcendental equation for calculating interface
position with respect to a given Stefan no vs time. The similarity solution is solved for
some example cases and interface attachment kinetics is discussed which find a number
of applications today especially in metal additive manufacturing [33].

• The perturbation analysis is discussed after this where a standard approximation is taken
for deriving behaviour of the two phase interface during solidification. The results agree
with the similarity solution analysis for small values of ε and predict boundary movement
similar to analytical results. The perturbation method is also used nowadays in the realm
of Stefan problem in dendritic growth and anisotropic diffusion [34].

• The Multiple variable expansion analysis is an immensely powerful tool to understand
stability of the interface from a geometric and thermodynamic point of view. Using
this work the seminal work of Mullins Sekerka is discussed and conditions studied. The
analysis is performed for lower order approximations though a higher order one can be
used for more accurate results. Despite this, the framework for stability analysis remains
the same. One might understand the concept of instability through the various shapes
seen in dendritic growth known as Litchenberg figures [35]

• To validate some of the results a simpler technique using cubic and exponential approxi-
mation method is used as a starting solution to the field variable. The results are validated
against perturbation results which in turn verifies the similarity solution as well. Using
this approach the best approximation is estimated and results discussed.

• One numerical method is discussed and presented to gain a quantitative understand of
the underlying PDE as well comparing analytical and numerical solution. Two different
time stepping schemes are discussed which is Forward Euler and Crank Nicholson. The
Stefan problem is numerically evaluated using the Crank Nicholson scheme and results
presented. Historically John Crank introduced this method for numerical solution of
PDE’s specifically for moving boundary problems as discussed in his seminal paper [36].

Other kinds of interfaces such as fluid-fluid can be studied more extensively using numerical
tools like Finite Element Analysis and Fourier Spectral methods. These will be addressed in a
later communication.
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